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Abstract. We propose a novel loss function for training text-to-video
and video-to-text retrieval networks based on knowledge distillation. This
loss function addresses an important drawback of the max-margin loss
function often used in existing cross-modality retrieval methods, in which
a fixed margin is used in training to separate matching video-and-caption
pairs from non-matching pairs, treating all non-matching pairs the same
and failing to account for the different degrees of non-matching. We ad-
dress this drawback by introducing a novel loss for the non-matching
pairs; this loss leverages the knowledge within one domain to train a
better network for matching between two domains. This proposed loss
does not require extra annotation. It is complementary to the existing
max-margin loss, and it can be integrated into the training pipeline of
any cross-modality retrieval method. Experimental results on four cross-
modal retrieval datasets namely MSRVTT, ActivityNet, DiDeMo, and
MSVD show the effectiveness of the proposed method.
Code is available at: https://github.com/tqvinhcs/CrossKD

Keywords: Text-video retrieval · Knowledge distillation.

1 Introduction

Given that videos have become a big part of our lives with hundred of thou-
sands of video hours produced, uploaded, and consumed every day, a problem of
growing importance in computer vision is to index and search for videos based
on their content. In this paper, we tackle two important cross modal retrieval
problems: text-to-video and video-to-text. In the former problem, the input is
a text query, and the system has to retrieve a list of videos with relevant con-
tent [15, 35]. In the latter, the input is a video, and the system has to rank a
list of captions based on how likely it is for the captions to be used to describe
the content of the video [15, 35]. This video-to-text retrieval task is useful for
automatically captioning a video based on its content. Hereafter, for brevity, we
will refer to these two problems as Text-and-Video Retrieval, or TVR for short.

TVR can be tackled by projecting text and video into a joint embedding
space and learning a similarity scoring function for text and video embedding
vectors. At test time, the retrieved candidates, either text or video, are ranked
based on their similarity with respect to the input query. Usually, an encoder
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such as an LSTM/RNN [30,57,58,60] or a language model such as BERT [11,15]
is used for encoding the caption. Whereas, the video representation is often a
composition of multiple types of features such as faces, scene, motion, and sound.
A feature aggregation method, such as NetVLAD [40] or a Transformer [15], is
then used for encoding the video features into a single representation.

The key question in this setting is how the joint embedding space and the sim-
ilarity scoring function are learned. Usually, one can assume that there is labeled
training data containing matching video-caption pairs i.e., the video and the cap-
tions associated with it. Non-matching video-caption pairs can be constructed
by pairing a random video with a random caption of another video. A common
approach in cross-modal retrieval is to treat matching and non-matching pairs
as positive and negative samples respectively, and a binary classifier is trained to
separate the two sets using the well-known max-margin loss. One major problem
of this approach is that it treats all non-matching pairs the same, demanding
a fixed separating margin for all of them. However, not all non-matching pairs
are alike. A caption CA of video A might be similar to a caption CB of video B,
so the pair (CA, B) would be a noisy negative sample. This severely affects the
performance of the learned embedding space and scoring function.

In this work, we propose a simple but effective technique to address this
problem. We use the similarity of the captions (or videos) as a better indicator for
the degree of matching and non-matching. In other words, we use the knowledge
of one domain (either text or video) to guide the training of neural networks that
connect between two domains. This is a type of knowledge distillation, where
knowledge within one domain is distilled to the between of two domains. The
main rationale behind this approach is as follows: we can more reliably learn a
within domain similarity function than a cross-domain similarity function, since
there is often larger amounts of within-domain training data. This suggests that
the former can be used as a teacher similarity function to train the latter. Fig. 1
illustrates this idea.

The proposed within-to-between knowledge distillation can be implemented
as a loss function and added to the existing training loss of any TVR framework
to learn the joint embedding of text and video. Experimental results on four TVR
benchmarks, MSRVTT [57], Activity Net [30], DiDeMo [20], and MSVD [5] show
that the proposed knowledge distillation loss improves the performance of two
cross modal retrieval frameworks.

2 Related Work

Text-Video Retrieval (TVR) is an emerging research area [15,17,30,35,39,41,
58,60]. Early works use language model such as LSTM [23] to represent text for
capturing the sequential properties in a sentence [6,30,58,60]. Before feeding to
the language model to extract sentence features, Word2Vec [42] is often used for
representing word embedding. Recent methods use more advanced architectures
such as OpenAI-GPT [35], BERT [15, 61] or GPT2-XL and GPT2-XL-F [9] for
text encoding. The video side is more complex where multiple modalities are used
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Fig. 1: Knowledge distillation for learning similarity scoring function
between a caption and a video. The distillation, illustrated as dash lines,
can be drawn from either the text domain or video domain. Our idea is based
on the observation that the similarity scoring function in the same domain is
more reliable than the similarity scoring function between two domains. Hence,
the former can be used as the teacher to train the latter.

for extracting video features. Then a multi-expert model such as NetVLAD [40],
Collaborative Experts [35], or Transformer [15] is used for representing video
features. However, previous works mainly focus on the features aggregation.
Instead, we propose a new learning objective for better learning the similarity
of text and video across modalities.

Knowledge distillation [22] has widely been used to transfer knowledge learned
between different deep learning models. This method was originally introduced
for decision tree simplification [2] and model compression [3]. This method has
been proven to be useful in many visual recognition problems [7, 27, 29, 31, 32,
38, 44, 48]. Conventionally, the knowledge is transferred from the teacher to the
student model by considering each data sample individually, but Park et al. [45]
propose a method that distills the mutual relation by penalizing structural dif-
ferences of data samples. To some extent, we also utilize the relational knowledge
from captions to captions and from videos to videos, but we perform knowledge
distillation across the domains of text and video. In recent works, knowledge
distillation has also been employed in the problem of cross modal learning [7].
However, this work focuses on aligning audio, image, and video representations,
which is different from the TVR task. Moreover, their proposed method is semi-
supervised and relies on class label prediction of human action for distillation.
Whereas our method is unsupervised and is trained without using any class label.
Recently, Croitoru et al. [9] proposed TEACHTEXT, a generalized distillation
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method utilizing multiple teachers to improve the retrieval performance. Our
knowledge distillation method differs from this by not using external teachers
during training. Alternatively, our distillation comes directly from the available
structure of the video and caption domains, which is very efficient to compute
and does not require an external model for distillation. Along with our work,
[8, 55] shows that related captions can also help improve the result embedding.

Contrastive learning for cross modal retrieval. To learn a joint embed-
ding space for cross modal retrieval, a common approach is to use contrastive
learning [26,33,38–41,51,61]. This learning method aims to maximize the simi-
larity of text and video representations extracted from the same instance while
maximizing the difference between text and video representations from dif-
ferent instances. To this end, bidirectional max-margin loss is used for train-
ing [6, 7, 9, 15, 35, 41]. By pushing dissimilar text-video pair away, the model
implicitly learns the ranking of video and text model based on their correspon-
dent similarity. Beside max-margin loss, recent works also use normalized soft-
max loss [59] for contrastive learning in a similar fashion [1]. Instead of learning
ranking function, some previous works also directly learn the similarity scores
between the two models using regression loss [54].

3 Knowledge Distillation for Cross Modal Retrieval

3.1 Framework for cross modal retrieval

Our method is applicable to different retrieval frameworks, including Multi-
modal Transformer (MMT) [15] and TEACHTEXT [9]. For brevity, we will
describe our method with the MMT framework in this section, but we will
demonstrate its benefits for both MMT, CLIP4Clip and TEACHTEXT in the
experiment section.

Video encoder. MMT [15] uses a Transformer architecture that combines mul-
tiple video embedding experts, with each expert corresponding to one type of
video feature among motion [56], audio [21], scene [25], OCR [10,36], face [19,34],
speech [42], and appearance [24]. The output of this video encoder is a repre-
sentation that consists of N different embeddings, denoted by Ψ(v) = {ψi}Ni=1.
Please refer to [15] for the implementation details of the multi-modal experts.

Text encoder. MMT uses a pre-trained BERT [11] model for encoding the cap-
tion text. BERT is a transformer-based model that has been shown to produce
effective text representations for a wide variety of tasks [11]. Each caption is
represented by BERT’s output vector for the “[CLS]” token. Subsequently, gated
embedding modules [40] are used to generate N different embeddings of this cap-
tion representation corresponding to N video experts. The caption embedding is
denoted by Φ(c) = {ϕi}Ni=1, where ϕi is the embedding vector of the ith expert.
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Fig. 2: The proposed distillation methods for cross modal text-video
retrieval. We use a BERT model for caption representation and Multi-modal
transformer for video representation. The video representation is the aggregation
of multiple experts. Using these output representations, the caption-to-caption
and video-to-video similarity can be computed efficiently within a training batch.
The compatibility function s(c, v) between caption and video can be trained with
the additional training signal.

The caption-video similarity is taken as the weighted sum of the experts’
caption-video similarity values:

s(c, v) =

N∑
i=1

wi⟨ϕi, ψi⟩, (1)

where ⟨·, ·⟩ denotes the dot product, and wi is the weight for the ith expert.
Given a query item in one domain, these similarity scores are then used to rank
items in the other domain. Fig. 2 depicts the processing pipeline of our cross
modal retrieval framework.

3.2 Bidirectional max-margin ranking loss

To encode the relationships and to measure similarity between a caption and a
video, existing methods use bidirectional max-margin loss to separate matching
caption-video pairs (called positive pairs) from the non-matching ones (called
negative pairs). Positive and negative pairs of caption-video are created within
each input training batch. A positive pair is the one where the caption and the
video come from the same training data instance. Whereas, a negative caption-
video pair consists of a caption and a video from different training instances.
An instance is a pair of a caption and a video in each training batch. For each
training instance, the similarity sij = s(ci, vj) between a caption i and a video
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j is computed. Then, a bidirectional max-margin loss is used to train the com-
patibility function as:

Lmargin =
1

B

B∑
i=1

∑
j ̸=i

[max(0, sij − sii +m) + max(0, sji − sii +m)], (2)

where B is the number of instances in each training batch and m the margin.
The bidirectional max-margin loss function requires that the compatibility of
a caption and a video from each positive pair to be higher than those from a
negative pair by at least a margin m. In other frameworks [1, 37], normalized
softmax loss function is used for contrastive learning instead of bidirectional
max-margin ranking loss.

3.3 Knowledge distillation loss from caption and video

Since videos and captions come from two different domains, learning a compat-
ibility function based solely on the max-margin loss may be sub-optimal. We
propose a complementary loss function that exploits the relationship between
data instances in the same domain and distill this knowledge between domains.
This is to use the similarity between captions (or between videos) from different
training samples as a guidance for training the compatibility function between
captions and videos. To this end, we compute the caption similarity of a given
caption to the other captions in an input training batch. For a caption c that
is represented by embedding vectors {ϕi}Ni=1 and a caption c′ represented by
embedding vectors {ϕ′i}Ni=1, the caption-to-caption similarity is computed as:

s(c, c′) =

N∑
i=1

wi⟨ϕi, ϕ′i⟩. (3)

Given a training batchB consisting of multiple caption and video pairs {(cj , vj)},
and a particular caption ci, we can compute the similarity between ci to other
cj ’s, which can then be normalized to get a proper probability distribution:

Pcc
ij =

exp(s(ci, cj)/τ)∑B
l=1 exp(s(ci, cl)/τ)

,∀j ∈ B, (4)

where τ > 0 is a temperature parameter controlling the smoothness of the
distribution. Similarly, we can also compute the cross-domain caption-to-video
similarity probability distribution as:

Qcv
ij =

exp(s(ci, vj)/τ)∑B
l=1 exp(s(ci, vl)/τ)

,∀j ∈ B, (5)

Given the above two distributions, we use the knowledge distillation loss to
measure the dissimilarity between the caption-to-caption distribution P and the
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caption-to-video distribution Q using Kullback–Leibler divergence as:

Lcap_distill =
1

B

B∑
i=1

KL(Pcc
i,: ||Qcv

i,:). (6)

Analogously, the similarity between videos features can be used as another
training signal. The video-to-video and video-to-caption similarity can also be
written in form of two distributions as:

Pvv
ij =

exp(s(vi, vj)/τ)∑B
l=1 exp(s(vi, vl)/τ)

,∀j ∈ B, (7)

and

Qvc
ij =

exp(s(cj , vi)/τ)∑B
l=1 exp(s(cl, vi)/τ)

,∀j ∈ B. (8)

Again, the video distillation loss is computed as the Kullback–Leibler diver-
gence between the two distributions:

Lvid_distill =
1

B

B∑
i=1

KL(Pvv
i,: ||Qvc

i,:). (9)

3.4 Composition loss for training retrieval model

We add the two new distillation loss functions in Eq. (6) and Eq. (9) to the
standard bidirectional max-margin ranking loss for training the compatibility
function between a caption and a video. The distillation loss for the captions is
given by:

Lcap_compose = Lmargin + Lcap_distill. (10)

In the same way, the knowledge distillation for videos is given by:

Lvid_compose = Lmargin + Lvid_distill. (11)

In our experiments, we train with both losses and also show an ablation study for
each loss function. During development, we explored several ways for combining
the two losses and find that treating both of them equally yields the best results.

4 Experimental Results

4.1 Text-video retrieval frameworks

Retrieval frameworks. One advantage of the proposed method is its ability
to be used with different TVR frameworks. To demonstrate this, we experi-
ment with three recent TVR frameworks: Multi-modal Transformer (MMT) [15],
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Table 1: Benefits of knowledge distillation for the MMT framework
on the MSRVTT and ActivityNet datasets. Both type of distillations effec-
tively improve the performances of text-to-video and video-to-text retrieval on
all datasets. Caption Distillation is slightly better than Video Distillation

Datasets & Methods Text → Video Video → Text

MSRVTT 1k-A R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
MMT [15] 26.6 57.1 69.6 27.0 57.5 69.7
MMT + Caption Distillation 27.8 58.4 70.4 27.0 58.8 70.2
MMT + Video Distillation 26.7 59.0 71.8 26.4 58.1 71.7

MSRVTT 1k-B R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
MMT [15] 20.3 49.1 63.9 21.1 49.4 63.2
MMT + Caption Distillation 20.8 52.4 66.5 22.7 52.5 67.4
MMT + Video Distillation 21.3 51.4 66.2 21.3 52.5 66.3

ActivityNet R@1↑ R@5↑ R@50↑ R@1↑ R@5↑ R@50↑
MMT [15] 22.7 54.2 93.2 22.9 54.8 93.1
MMT + Caption Distillation 24.3 57.1 94.1 26.5 58.7 94.1
MMT + Video Distillation 24.4 58.0 94.0 25.7 58.0 93.3

CLIP4Clip [37], and TEACHTEXT [9]. Both MMT and TEACHTEXT are
based on Collaborative Experts (CE) architecture [35] with multiple experts
for video encoding. Meanwhile, CLIP4Clip [37] is the most recent framework for
TVR with a single video encoder based on vision transformer.

Video encoders. MMT [15] uses seven pretrained experts for video encod-
ing, namely: Motion from S3D [56], Audio from VGGish [21], Scene from
DenseNet [25], OCR from the output of text detector embedded with Word2Vec
[42], Face from ResNet50 [18] trained on VGGFace2, Speech using Google
Cloud Speech, and Appearance from SENet-154 [24].

TEACHTEXT [9] also uses seven experts for video encoding. Most of these
video experts are similar to that of MMT, except for the Motion expert which
comprises of two action experts Action(KN) and Action(IG). The first action
expert, Action(KN), is an I3D model trained on Kinetics [4], and the second
expert, Action(IG), is a 34-layer R(2+1)D model [52] pretrained on IG-65m
dataset [16]. TEACHTEXT establishes a stronger baseline than CE (denoted as
CE+) by using the more powerful text embeddings from GPT2-XL [50]. The
full TEACHTEXT framework (denoted as TT-CE+) is trained with additional
knowledge given by multiple text encoders as teachers including Word2Vec [42],
GPT2-XL [50], and GPT2-XL-F.

CLIP4Clip [37] uses the pretrained CLIP [49] model as a single video encoder.
The encoder is based on Vision Transformer (ViT) [12]. In our experiment, we
use the pretrained CLIP (ViT-B/16) [49] as our backbone to encode video. The
visual encoder has 12 layers and patch size of 16. Unfortunately, due to our
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Table 2: Text-to-video retrieval performance for CLIP4CLIP with and
without knowledge distillation on the MSRVTT, MSVD and DiDeMo datasets.
Both type of distillations effectively improve the performances on all datasets. All
the results are obtained using ViT-B/16 as video encoder. Caption Distillation
is slightly better than Video Distillation

Datasets and Methods R@1↑ R@5↑ R@10↑ MnR↓

MSRVTT 1k-A
CLIP4Clip [37] 43.4 72.3 80.5 15.4
CLIP4Clip + Caption Distillation 46.2 73.1 81.2 13.2
CLIP4Clip + Video Distillation 44.7 72.8 81.1 13.8

MSVD
CLIP4Clip [37] 48.6 78.6 87.2 9.0
CLIP4Clip + Caption Distillation 48.8 79.2 87.5 8.7
CLIP4Clip + Video Distillation 48.9 79.1 87.4 9.0

DiDeMo
CLIP4Clip [37] 42.0 69.1 78.1 18.8
CLIP4Clip + Caption Distillation 43.2 69.7 79.2 17.5
CLIP4Clip + Video Distillation 43.2 69.2 79.3 17.9

limited computational resources, we have to keep the first 6 layers of the ViT-
B/16 frozen during training. Furthermore, we can only train our model with
relatively smaller batch sizes in comparison to [37]. The batch sizes are set to be
24 for MSRVTT and MSVD datasets. For DiDeMo, we can only use the batch size
of 6, since the videos in this dataset are relatively long and the video encoder
requires a long observation window of 64 frames. As a result, our reproduced
results for CLIP4CLIP on DiDeMo are not as good as the previously reported
results [37].

Training details. Our training procedure is based on the implementation of
MMT1, TEACHTEXT2, and CLIP4Clip3. We train all the models on PyTorch [46]
with Adam optimizer [28]. The bidirectional max-margin ranking loss is used for
MMT and TEACHTEXT (CE+ and TT-CE+), while the normalized softmax
loss is used in CLIP4Clip for contrastive learning. If not otherwise specified, all
training parameters are the same as reported in MMT [15], TEACHTEXT [9],
and CLIP4Clip [37].

4.2 Datasets

We perform experiments on four challenging TVR benchmarks: MSRVTT [57],
ActivityNet [30], DiDeMo [20], and MSVD [5]. We report performances on both

1 https://github.com/gabeur/mmt
2 https://github.com/albanie/collaborative-experts
3 https://github.com/ArrowLuo/CLIP4Clip
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text-to-video and video-to-text retrieval tasks. For experiments using TEACH-
TEXT and CLIP4Clip, we follow [9,37] to report only text-to-video performance.

MSRVTT [57] is a large-scale dataset for video understanding, especially for
TVR. The dataset contains 10, 000 video clips crawled from web. Each video
clip is associated with 20 natural sentences annotated by AMT workers. In the
MMT framework, we follow [15, 40, 58] and perform experiments on Split 1k-A
and Split 1k-B. Split 1k-A [58] uses 9000 videos for training and 1000 for testing.
Meanwhile, Split 1k-B [40] uses 6656 videos for training and 1000 for testing.
In addition, for direct comparison with prior work, we also provide the retrieval
performance on the full split of this dataset with TEACHTEXT framework (6513
videos for training, 497 for validation, and 2990 for testing).

ActivityNet [30] contains 20, 000 Youtube videos amounting to 849 video hours
with temporally annotated sentence descriptions. Following [60] and [15], we
concatenate all the sentence descriptions for each video to form a paragraph.
There are 10009 instances in the training set. Following the same paragraph-
video retrieval setup in [15, 35, 60], we perform evaluation on the “val1” split
(4917 videos) of this dataset.

DiDeMo [20] stands for Distinct Describable Moments. This dataset contains
unedited 10,464 personal videos in multiple content such as sports, concerts, and
pets. Each video in the dataset has three to five captions. We follow [9, 35, 60]
and use 8392 videos for training, 1065 for validation, and 1004 for testing.

MSVD [5] dataset has 1970 video clips associated with 80K English captions.
The setup is similar to [9, 35], where 1200 clips are used for training, 100 for
validation, and 670 for testing. Since MSVD videos do not contain sound, audio-
based features are not used for this dataset.

Evaluation metrics. The performance of all models are evaluated with recall
at rank N (R@N), a standard retrieval metric. A better model should achieve
higher recall. We also report median rank (MdR) and mean rank (MnR) of
the correct results. For median rank and mean rank, a lower number indicates
better performance. Similar to [9], we also report the geometric mean of R@1,
R@5, and R@10 for conciseness. The geometric mean summarizes the overall re-
trieval performance at multiple recall ranking steps. Since each TVR framework
is performed on a different subset of datasets, we will perform our experiments
following the setups in previous works [9, 15,37].

4.3 Knowledge Distillation for the MMT retrieval framework

We first evaluate the benefits of knowledge distillation for MMT on the MSRVTT
and ActivityNet datasets. As can be seen from Table 1, training retrieval models
with knowledge distillation improves the retrieval performance. Our models yield
significant improvement over its direct baseline MMT on both text-to-video and
video-to-text retrieval tasks. For Split 1k-A, Caption Distillation improves the
text-to-video retrieval performance from 26.6% to 27.8% at R@1. For R@5 and
R@10, the performance gain brought by Video Distillation are even higher, from
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Table 3: Text-to-video retrieval performance of TEACHTEXT [9] with-
out and with Caption Distillation on four datasets
Methods R@1↑ R@5↑ R@10↑ MdR↓

MSRVTT
CE+ [9] 13.8 36.5 49.4 11.0
+Our Distillation 14.7 37.8 50.6 10.0

ActivityNet
CE+ [9] 19.4 49.3 65.4 6.0
+Our Distillation 20.6 50.6 66.9 5.0

MSVD
CE+ [9] 25.1 56.5 70.9 4.0
+Our Distillation 26.0 58.3 72.9 4.0

DiDeMo
CE+ [9] 18.2 43.9 57.1 7.9
+Our Distillation 20.2 45.2 58.8 7.0

Methods R@1↑ R@5↑ R@10↑ MdR↓

TT-CE+ [9] 14.6 37.9 50.9 10.0
+Our Distillation 14.7 38.1 51.1 10.0

TT-CE+ [9] 23.5 57.2 73.6 4.0
+Our Distillation 23.9 57.3 73.5 4.0

TT-CE+ [9] 25.1 56.8 71.2 4.0
+Our Distillation 25.5 57.1 71.7 4.0

TT-CE+ [9] 21.6 48.6 62.9 6.0
+Our Distillation 21.7 49.2 62.4 5.7

Table 4: Text-to-video retrieval performance for TEACHTEXT meth-
ods with and without knowledge distillation. The performance measure
is the geometric mean of R@1, R@5 and R@10. The left columns on each
dataset are the base models of CE+ and TT-CE+ from TEACHTEXT. The
right columns are the results obtained by adding our distillation loss. Our pro-
posed method improves the performance on all base models in all datasets

Method MSRVTT ActivityNet DiDeMo MSVD

Base Ours Base Ours Base Ours Base Ours

CE+ [9] 29.2 30.4 39.7 41.1 35.8 37.7 46.5 47.9
TT-CE+ [9] 30.4 30.6 46.3 46.5 40.4 40.5 46.6 47.1

57.1% to 59.0% and 69.6% to 71.8%, respectively. On the ActivityNet dataset,
the performance gaps are even wider, clearly demonstrating the benefits of our
proposed distillation loss. Our models perform better than the direct baseline
MMT at every recall step. Both types of knowledge distillation provide benefits
for training the retrieval system. Between the two, Caption Distillation performs
slightly better than Video Distillation. There are two possible reasons that can
explain this. One reason is that caption similarity starts with a pretrained BERT
model, whereas video similarity is trained from scratch. The other is that the
text similarity computation is arguably simpler in that it is done over a single
representation, while the video similarity is computed over a composition of
features from multiple experts.

4.4 Knowledge Distillation for the CLIP4Clip retrieval framework

We also consider a recent TVR framework CLIP4Clip [37]. For this framework,
the bidirectional max-margin loss is replaced by the normalized softmax loss for
contrastive learning. Hence, the composition losses Lnorm_softmax + Lcap_distill
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Table 5: Comparison to other methods on MSRVTT 1k-A dataset. Re-
sults are obtained by applying caption distillation on CLIP4Clip [37] framework.

Method R@1↑ R@5↑ R@10↑ MnR↓

ActBERT [61] 8.6 23.4 33.1 -
MIL-NCE [39] 9.9 24.0 32.4 -
JSFusion [58] 10.2 31.2 43.2 -
HT [41] 12.1 35.0 48.0 -
HT-pretrained [41] 14.9 40.2 52.8 -
CE [35] 20.9 48.8 62.4 28.2
CLIP [49] 22.5 43.3 53.7 61.7
MMT [15] 24.6 54.0 67.1 -
MMT-pretrained [15] 26.6 57.1 69.6 24.0
TT-CE+ [9] 29.6 61.6 74.2 -
SSB [47] 30.1 58.5 69.3 -
Frozen [1] 31.0 59.5 70.5 -
MDMMT [13] 38.9 69.0 79.7 16.5
CLIP4Clip [37] 44.5 71.4 81.6 15.3

Ours 46.2 73.1 81.2 13.2

and Lnorm_softmax + Lvid_distill are used instead. As can be seen from Table 2,
both proposed distillation losses, especially the Caption Distillation loss, improve
the retrieval performance on the three datasets.

4.5 Knowledge Distillation for the TEACHTEXT Framework

We also evaluate the benefits of knowledge distillation for the TEACHTEXT [9]
framework. As before, the distillation losses are added to the training loss of
this method. Since caption distillation is slightly better than video distillation,
we perform further experiments with caption distillation only. The experiments
are conducted for two training settings: (1) without external teachers (CE+),
and (2) with external teachers (TT-CE+). Specifically, we use the loss Lmargin+
Lcap_distill when applying our method on the CE+ setting, and the loss Lmargin+
Ld +Lcap_distill when applying our method on the TT-CE+ setting. Here, Ld is
the distillation loss from external teachers [9].

Following [9], we perform experiments on the four TVR benchmarks. For a
fair comparison with most previous methods, we do not use the denoising trick [9]
when training on the crowd-sourced datasets MSRVTT and MSVD.

Performance without using external teachers (CE+). Tables 3 and 4
show the results of this experiment. On all four datasets, the CE+ method
with the proposed caption distillation outperforms the baseline CE+ method
without any knowledge distillation. On average, caption distillation brings a
1.4% gain over the direct baseline CE+. We also show some qualitative results
of our proposed method in Fig. 3. Notably, the proposed method is a form of
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Table 6: Comparison with the other methods on the MSVD dataset.
Method R@1↑ R@5↑ R@10↑ MnR↓

VSE++ [14] 15.4 39.6 53.0 -
M-Cues [43] 20.3 47.8 61.1 -
MEE [40] 21.1 52.0 66.7 -
CE [9] 21.5 52.3 67.5 -
TT-CE [9] 22.1 52.2 67.2 -
CE+ [9] 25.1 56.5 70.9 -
TT-CE+ [9] 25.1 56.8 71.2 -
SSB [47] 28.4 60.0 72.9 -
Frozen [1] 33.7 64.7 76.3 -
CLIP4Clip [37] 46.2 76.1 84.6 10.0

Ours 48.8 79.2 87.5 8.7

Query: bird picks up a bag bird
folds paper over. the bird lifts
the napkin with its head. the
bird begins to eat the bread.

Query: the camera turns and
films the back of the airplane
we no longer see the grass
people in a field are standing
the camera zooms in on the
plane and the grass can no
longer be seen.

Ground Truth CE+ Ours

Old Rank: 5
New Rank: 1

Old Rank: 13
New Rank: 7

Rank 1 Rank 1

Rank 1 Rank 1

Fig. 3: Qualitative retrieval performance on DiDeMo dataset with CE+
baseline. On the left is the query. The first column is the correct video clip.
The next two columns show the top 1 retrieved clips by CE+ and our proposed
method respectively.

self-distillation and does not use any external information for training, while the
full TT-CE+ employs the external teachers for distillation.

Performance using external teachers (TT-CE+). As can be also seen in
Tables 3 and 4, caption distillation is still beneficial when combining with the
external teachers of TEACHTEXT. However, the additional benefit is not as
large as when training without external teachers (i.e., with the direct CE+ base-
line). This is likely due to the saturation of information, since we already have
the extra distillation from the three external teachers. A similar saturation phe-
nomenon was also reported in [9]. The performance of TEACHTEXT plateaued
after three external teachers had been used for distillation, and no significant
further improvement was observed.
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Table 7: Comparison with other methods on the DiDeMo dataset.
Method R@1↑ R@5↑ R@10↑ MnR↓

S2VT [53] 11.9 33.6 - -
FSE [60] 13.9 36.0 - -
MEE [40] 16.1 41.2 55.2 43.7
CE [9] 17.1 41.9 56.0 -
TT-CE [9] 21.0 47.5 61.9 -
CE+ [9] 18.2 43.9 57.1 -
ClipBERT [33] 20.4 48.0 60.8 -
TT-CE+ [9] 21.6 48.6 62.9 -
Frozen [1] 34.6 65.0 74.7 -
MDMMT [13] 38.9 69.0 79.7 -
CLIP4Clip [37] (reported in [37]) 43.4 70.2 80.6 17.5
CLIP4Clip-rerun (frozen layers + smaller batches) 42.0 69.1 78.1 18.8

CLIP4Clip-rerun + Caption Distillation (Ours) 43.2 69.7 79.2 17.5

4.6 Comparison to other methods

Using the proposed caption distillation loss with CLIP4CLIP, we achieve better
text-to-video retrieval performance than the previous state-of-the-art results, as
can be seen in Table 5 for MSRVTT 1k-A and Table 6 for MSVD datasets. The
results on the DiDeMo dataset is shown in Table 7, and our method is not better
than the current state-of-the-art due to the lack of computational resources
to follow the recommended experiment setting. As explained in Sec. 4.1, for
DiDeMo, we has to freeze some network layers and use much smaller batch
size. This method is denoted as CLIP4CLIP-rerun in Table 7, and our method
outperforms this direct baseline.

5 Conclusions

In this paper, we proposed a novel knowledge distillation loss for cross modal
text-to-video and video-to-text retrieval. The new loss exploits the information
from features of the same domain as knowledge to guide the similarity learning
for the cross domain matching. This information does not require any external
data or additional annotation and can be drawn directly from either the text
or video features for distillation. This loss function can be combined with the
original loss function of a retrieval framework. More importantly, our proposed
knowledge distillation loss is framework agnostic, and is applicable to any re-
trieval framework. Extensive experiments on three retrieval frameworks and four
large-scale datasets for cross modal retrieval show the benefits of our method.
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