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Abstract. We tackle the task of Class Agnostic Counting, which aims
to count objects in a novel object category at test time without any
access to labeled training data for that category. All previous class ag-
nostic counting methods cannot work in a fully automated setting, and
require computationally expensive test time adaptation. To address these
challenges, we propose a visual counter which operates in a fully auto-
mated setting and does not require any test time adaptation. Our pro-
posed approach first identifies exemplars from repeating objects in an
image, and then counts the repeating objects. We propose a novel re-
gion proposal network for identifying the exemplars. After identifying
the exemplars, we obtain the corresponding count by using a density es-
timation based Visual Counter. We evaluate our proposed approach on
FSC-147 dataset, and show that it achieves superior performance com-
pared to the existing approaches. Our code and models are available at:
https://github.com/Viresh-R/ExemplarFreeCounting.git.

1 Introduction

In recent years, visual counters have become more and more accurate at counting
objects from specialized categories such as human crowd [11, 49, 12, 25], cars [26],
animals [3], and cells [2, 47, 13]. Most of these visual counters treat counting as
a class-specific regression task, where a class-specific mapping is learned to map
from an input image to the corresponding object density map, and the count is
obtained by summing over the density map. However, this approach does not
provide a scalable solution for counting objects from a large number of object
categories because these visual counters can count only a single category at a
time, and it also requires hundreds of thousands [49] to millions of annotated
training objects [44, 38] to achieve reasonably accurate performance for each
category. A more scalable approach for counting objects from many categories
is to use class-agnostic visual counters [24, 30], which can count objects from
many categories. But the downside of not having a predefined object category
is that these counters require a human user to specify what they want to count
by providing several exemplars for the object category of interest. As a result,
these class-agnostic visual counters cannot be used in any fully automated sys-
tems. Furthermore, these visual counters need to be adapted to each new visual
category [24] or each test image [30], leading to slower inference.
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Fig. 1. Exemplar Free Class Agnostic Counter. Given an image containing in-
stances of objects from unseen object categories, our proposed approach first generates
exemplars from the repeating classes in the image using a novel region proposal net-
work. Subsequently, a density predictor network predicts separate density maps for
each of the exemplars. The total count for any exemplar, i.e. the number of times the
object within the exemplar occurs in the image, is obtained by summing all the values
in the density map corresponding to that exemplar.

In this paper, we present the first exemplar-free class-agnostic visual counter
that is capable of counting objects from many categories, even for novel cate-
gories that have neither annotated objects at training time nor exemplar objects
at testing time. Our visual counter does not require any human user in its count-
ing process, and this will be very crucial for building fully automated systems
in various applications in wildlife monitoring, healthcare and visual anomaly
detection. For example, this visual counter can be used to alert environmen-
talists when a herd of animals with significant size pass by an area monitored
by a wildlife camera. Another example is to use this visual counter to monitor
for critical health conditions when any certain type of cells outgrows the other
types. Unlike existing class-agnostic counters [24, 30], our approach does not use
any test time adaptation or finetuning.

At this point, a reader might wonder if it is possible to identify all possible ex-
emplars in an image automatically by using a class-agnostic object detector such
as a Region Proposal Network (RPN) [33], and run an existing class-agnostic vi-
sual counter using the detected exemplars to count all objects in all categories.
Although this approach does not require a human’s input during the counting
process, it can be computationally expensive. This is because the RPNs usually
produce a thousand or more of object proposals. And this in turn requires execut-
ing the class-agnostic visual counter at least a thousand times, a time-consuming
and computationally demanding process.

To avoid this expensive procedure, we develop in this paper a novel con-
volutional network architecture called Repetitive Region Proposal Network
(RepRPN), which can be used to automatically identify few exemplars from
the most frequent classes in the image. RepRPN is used at the first stage of our
proposed two-stage visual counting algorithm named RepRPN-Counter. We use
a density estimation based Visual Counter as the second stage of the RepRPN-
Counter, which predicts a separate high resolution density map for each exem-
plar. Given an input image, RepRPN considers multiple region proposals, and
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compute the objectness and repetition scores for each proposal. The repetition
score of a proposal is defined as the number of times the object contained within
the proposal occurs in the image. The proposals with the highest repetition scores
are chosen as the exemplars, and the second stage density predictor estimates
the density maps only for the chosen exemplars with high repetition scores. This
exemplar generation procedure relies on the underlying assumption that in an
image containing different classes with varying counts, the classes of interest are
the ones having larger counts. Compared to the traditional RPN [33], RepRPN
is better suited for visual counting task, since it can significantly reduce the
training and inference time for any two-stage counter. Furthermore, RepRPN
can serve as a fast visual counter for applications which can tolerate some mar-
gin of error and do not require the localization information conveyed by density
maps. Note that the second stage predictor of our visual counter estimates a
separate density map for each of the chosen exemplars.

While training RepRPN-Counter, another technical challenge that we need
to overcome is the lack of proper annotated data. The only dataset suitable for
training class-agnostic visual counters is FSC-147 [30], which contains annotation
for a single object category in each image, and may contain unannotated objects
from other categories. To obtain annotation for unannotated objects in the FSC-
147 dataset, we propose a novel knowledge transfer strategy where we use a
RepRPN trained on a large scale object detection dataset [19] and a density
prediction network [30] trained on FSC-147 as teacher networks.

In short, the contributions of this paper are threefold: (1) we develop the first
exemplar free class agnostic visual counter for novel categories that have neither
annotated objects at training time nor exemplar objects at testing time; (2)
we develop a novel architecture to simultaneously estimate the objectness and
repetition scores of each proposal; (3) we propose a knowledge transfer strategy
to handle unannotated objects in the FSC-147 dataset.

2 Related Work

Visual Counting. Most previous methods for visual counting focus on specific
categories [48, 41, 31, 1, 25, 49, 28, 4, 35, 17, 22, 6, 29, 37, 20, 45, 39, 42, 43]. These
visual counters can count a single category at a time, and require training data
with hundreds of thousands [49] to millions of annotated instances [44] for every
visual category, which are expensive to collect. These visual counters cannot
generalize to new categories at test time, and hence, cannot handle our class
agnostic counting task. To reduce the expensive annotation cost, some of these
methods focus on designing unsupervised [22] and semi-supervised tasks [23] for
visual counting. However, these methods still require a significant amount of
annotations and training time for each new category.

Class Agnostic Counting. Most related to ours is the previous works on class
agnostic counting [24, 30], which build counters that can be trained to count
novel classes using relatively small number of examples from the novel classes.
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Lu and Zisserman [24] proposed a Generic Matching Network (GMN) for class-
agnostic counting, which follows a two-stage training framework where the first
stage is trained on a large-scale video object tracking data, and the second
stage consists of adapting GMN to a novel object class. GMN uses labeled data
from the novel object class during the second stage, and only works well if
several dozens to hundreds of examples are available for the adaptation. Few-
shot Adaptation and Matching Network (FamNet) [30] is a recently proposed
class agnostic few-shot visual counter which generalizes to a novel category at
test time given only a few exemplars from the category. However, FamNet is an
interactive visual counter which requires an user to provide the exemplars from
the test image. Both GMN and FamNet require test time adaptation for each
new class or test image, leading to slower counting procedures.

Zero-Shot Object Detection. Also related to ours is the previous work on
zero-shot object detection [5, 50, 27]. Most of these approaches [5, 27] use a re-
gion proposal network to generate class-agnostic proposals, and map the features
from the proposals to a semantic space where they can be directly compared
with semantic word embeddings of novel object classes. However, all of these
zero-shot detection approaches require access to the semantic word embeddings
for the test classes, and cannot work for our class agnostic counting task where
the test classes are not known a priori.

Few-Shot Learning. Also related to ours is the previous works on few-shot
learning [16, 15, 36, 8, 32], which aim to adapt classifiers to novel categories
based on only a few labeled examples. One of the meta learning based few-shot
approaches, Model Agnostic Meta Learning (MAML) [8], has been adapted for
class-agnostic counting [30]. MAML focuses on learning parameters which can
adapt to novel classes at test time by doing only a few gradient descent steps.
Although these few-shot methods reduce the labeled data needed to generalize
to new domains, most of these approaches cannot be used for our class agnostic
counting task due to the unavailability of labeled data from the novel test class.

3 Proposed Approach

We propose an exemplar-free class-agnostic visual counter called RepRPN-Counter.
Given an image containing one or more repetitive object categories, RepRPN-
Counter predicts a separate density map for each of the repetitive categories. The
object count for the repetitive categories can be obtained by simply summing up
the corresponding density map. For a category that is counted, RepRPN-Counter
also provides the bounding box for an example from the category.

RepRPN-Counter consists of two key components: 1) a Repetitive Region
Proposal Network (RepRPN) for identifying exemplars from repetitive objects
in an image, along with their approximate count; and 2) a Density Prediction
Network (DPN) that predicts a density map corresponding to any exemplar
produced by the RepRPN.

For the rest of this section, we will describe the architecture of RepRPN in
Sec. 3.1, the architecture of RepRPN-Counter in Sec. 3.2, the knowledge transfer

3124



Exemplar Free Class Agnostic Counting 5

Fig. 2. RepRPN-Counter is a two-stage Exemplar Free Class Agnostic Counter.
RepRPN-Counter has two key components: 1) Repetitive Region Proposal Network
(RepRPN) and 2) Density Prediction Network (DPN). RepRPN predicts repetition
score and objectness score for every proposal. Repetition score is used to select few
proposals, called exemplars, from the repeating classes in the image. The DPN predicts
a separate density map for any proposal selected by the RepRPN. The total count for
any proposal, i.e. the number of times the object within the proposal occurs in the
image, is obtained by summing all the values in the density map corresponding to that
proposal. The DPN ignores proposals which are less likely to contain repetitive objects,
so as to reduce the time required for training and evaluation. To keep things simple, we
have shown the density prediction step for a single proposal. In reality, several density
maps are predicted by the DPN, one for every selected proposal.

Fig. 3. Missing labels in the FSC-147 dataset. Each image in the dataset comes
with bounding box annotations for the exemplar objects(shown in blue), and dot anno-
tations for all objects belonging to the same category as the exemplar. For each image,
objects of only a single class are annotated. We present a knowledge transfer strategy
to deal with incomplete annotation.

approach for handling incomplete annotation in Sec. 3.3, and the overall training
strategy in Sec. 3.4

3.1 Repetitive Region Proposal Networks

Repetitive Region Proposal Network (RepRPN) proposes exemplars from the
repetitive object classes in an image. RepRPN takes as input convolutional fea-
ture representation of an image computed by the Resnet-50 backbone [10], and
predicts proposal bounding boxes along with objectness and repetition scores for
every proposal at every anchor location. The objectness score is the probability
of the proposal belonging to any object class and not the background class. The
repetition score refers to the number of times the object within the proposal
occurs in the image. For example, consider an image with m cats and n oranges.
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The RepRPN should predict m as the repetition score for any cat proposal,
and n as the repetition score for any orange proposal. The repetition score is
used to select exemplars from the repetitive classes in the image, i.e. the propos-
als with the highest repetition score are chosen as the exemplars. The original
RPN formulation [33] uses a fixed window around an anchor location to pre-
dict the proposal boxes and objectness scores. However, this fixed sized window
does not cover the entire image, and it does not contain sufficient information
to predict the repetition score. This has been verified in our experiment where
an RPN using only fixed-size window over convolutional features was unable to
predict the repetition score. Predicting repetition score would require access to
information from the entire image. To obtain this global information efficiently,
we make use of the Encoder Self-Attention layers [40]. Given a feature vector
at any location in the convolutional feature map, self-attention layers can pool
information from similar vectors from the entire image, and can be used to es-
timate repetition score at any anchor location. To apply self-attention, we first
transform the convolutional features into a sequence of length n: S ∈ Rn×d.
To preserve positional information, we concatenate appropriate d

2 -dimensional
row and column embeddings, resulting in d dimensional positional embeddings
which are added with the sequence S. We refer to the resulting embeddings as
X ∈ Rn×d.

Given the sequence X, the self-attention layer first transforms X into query
(XQ), key (XK), and value (XV ) matrices by multiplying X with matrices WQ,
WK , and WV :

XQ = XWQ, XK = XWK , XV = XWV . (1)

The self-attention layer outputs a new sequence U where the ith element in
the output sequence is obtained as a weighted average of the value sequence, and
the weights are decided based on the similarity between the ith query element
and the key sequence. The output sequence U is computed as follows:

U = softmax(XQX
T
K)XV . (2)

Tensor U will be reshaped into a tensor U ′ that has the same spatial dimen-
sions as the input convolutional feature map. Tensor U ′ will be forwarded to the
bounding box regression, objectness prediction, and repetition score prediction
heads. Each prediction head consists of a single 1×1 convolutional layer. At each
anchor location in the image, we consider k anchors boxes. For each anchor box,
we predict an objectness score, a repetition score, and bounding box coordinates.
The repetition score is used to identify proposals containing the repetitive ob-
jects in the image, i.e. proposals with a large repetition score contain repetitive
objects.

3.2 RepRPN-Counter

As shown in Fig. 2, RepRPN-Counter consists of a Resnet-50 feature backbone,
a RepRPN proposal network, and a Density Prediction Network (DPN). The
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RepRPN and the DPN share the same feature backbone. The RepRPN provides
the DPN with the bounding box locations of the proposals with large repetition
scores, also called exemplars, and the DPN predicts a separate density map for
each exemplar. DPN is trained and evaluated on only the chosen exemplars, and
not all the proposals, so as to reduce the training and inference time. Similar to
the previous works on class-agnostic counting [24, 30], DPN combines the con-
volutional features of an exemplar, with the convolutional features of the entire
image to predict the density map for the exemplar. The exemplar features are
obtained by performing ROI pooling on the convolutional features computed by
the backbone, at the locations defined by the exemplar bounding boxes. The
exemplar features are correlated with the image features, and the resulting cor-
relation map is propagated through the DPN. The DPN is a fully convolutional
network consisting of five convolutional layers and three upsampling layers (more
architecture details are provided in the Supplementary submission), and the pre-
dicted density maps have the same spatial dimensions as the the input image.
Note that the DPN predicts several density maps, one for each exemplar. The
overall count for an object class pertaining to an exemplar is obtained by simply
summing all the values in the density map corresponding to the exemplar. The
DPN is not evaluated on the proposals with a low repetition score. For such
proposals, the repetition score can be used as the final count.

3.3 Knowledge transfer for handling missing labels

The only existing dataset consisting of images of densely populated objects from
many visual categories that can be used for training class agnostic visual counters
is FSC-147 [30]. However, it is not trivial to train RepRPN-Counter on FSC-147
because of the missing labels in the dataset. FSC-147 comes with two types of
annotations for each image: a few exemplar bounding boxes to specify the object
category to be counted, and dot annotations for all of the objects belonging to
the same category as the specified exemplars. However, an image may contain
objects from another category that has not been annotated, as shown in Fig. 3.
Given the missing labels, forcing RepRPN-Counter to predict zero count for the
unannotated objects may degrade the performance of the counter.

We use knowledge transfer from teacher networks to address the incomplete
annotation issue. We first train a RepRPN on the MSCOCO object detection
dataset [19]. The MSCOCO training set consists of over 82K natural images
from 80 visual categories, and the RPNs trained on this large dataset have been
shown to generalize to previously unseen classes, thereby proving useful for tasks
like zero-shot object detection [27]. We use the RepRPN trained on MSCOCO
as a teacher network for generating the target labels for the objectness scores
and the repetition scores for those proposals not intersecting with the annotated
objects in the FSC-147 dataset. To get the target density maps corresponding to
the unannotated proposals, we use the pretrained class-agnostic visual counter
FamNet [30], which can predict the density map for a novel object class given only
a single exemplar. When needed, an unannotated proposal is fed into FamNet,
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and the output of FamNet is used as the target density map for training the
proposed network RepRPN-Counter.

3.4 Training Objective

RepRPN-Counter is trained in two stages. The first stage consists of training
the RepRPN. Once trained, the RepRPN is kept frozen and used to generate
exemplars for the density estimation network DPN. The second stage of training
consists of training the DPN to predict the density map for every exemplar.

Training objective for RepRPN. For the ith anchor box, the outputs of
the RepRPN are the objectness score yi, the bounding box coordinates bi, and
the repetition score ci. Let the corresponding ground truth labels be y∗i , b∗i , c∗i .
We follow the same protocol as used in Faster RCNN [33] for obtaining the
binary objectness label y∗i , and the same parameterization for the bounding box
coordinates bi. c∗i is the number of times the object within the anchor box, if
any, occurs in the image. Since predicting ci requires access to global information
about the image, RepRPN makes use of self-attentional features as described in
Sec. 3.1. The training loss for the ith anchor box is:

LRepRPN = λLcls(yi, y
∗
i ) + λLreg(bi, b

∗
i ) + Lreg(ci, c

∗
i ), (3)

where Lcls is the binary cross entropy loss, and Lreg is the smooth L1 loss. When
training RepRPN on the FSC-147 dataset, the labels y∗i and c∗i for the positive
anchors are obtained using the ground-truth annotation of FSC-147. Note that
in the FSC-147 dataset, only three exemplars per image are annotated with
bounding boxes, while the rest of the objects are annotated with a dot around
their center. We obtain the bounding boxes for all the dot annotated objects by
placing a bounding box of the average exemplar size around each of the dots.
For anchors not intersecting with any of the annotated bounding boxes in FSC-
147, y∗i and c∗i labels are obtained using a teacher RepRPN, which has been
pre-trained on the MSCOCO dataset [19].

Training objective for DPN. Given an exemplar bounding box bi and the
feature map U for an input image I of size H×W , the density prediction network
DPN predicts a density map Zbi = f(U, bi) of size H×W . The training objective
for the DPN is based on the mean square error:

Lmse(Zbi , Z
∗) =

1

HW

H∑
r=1

W∑
c=1

(Zbi(r, c)− Z∗(r, c))2,

where Z∗ is the target density map corresponding to Zbi . If the exemplar bi
intersects with any annotated object, Z∗ is obtained by convolving a Gaussian
kernel with the corresponding dot annotation map. Note that Gaussian blurred
dot annotation maps are commonly used for training density estimation based
visual counters [49, 12, 28, 24, 21]. For cases where bi does not intersect with any
annotated object, we use the pretrained FamNet [30] as a teacher network for
obtaining Z∗. The FamNet teacher can predict a density map, given an exemplar
bi and an input image I.
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3.5 Implementation details

For training, we use Adam optimizer [14] with a learning rate of 10−5 and batch
size of one. We use the first four convolutional blocks from the ImageNet pre-
trained ResNet-50 [10] as the backbone. We keep the backbone frozen during
training, since finetuning the backbone would yield poor results. This is because
the backbone has feature maps suitable for detecting a large number of classes,
and finetuning the backbone leads to specialization towards FSC-147 training
classes, resulting in poor performance on the novel test classes.

The weights of the RepRPN and DPN are initialized from a zero mean
univariate Gaussian with standard deviation of 10−3. RepRPN uses five self-
attention transformer layers, each with eight heads. For training the RepRPN,
we use four anchors sizes of 32, 64, 128, 256 and three aspect ratios of 0.5, 1, 2.
We sample a batch of 96 anchors from each image during training. Training is
done for 1000 epochs.

4 Experiments

4.1 Dataset

We perform experiments on the recently proposed FSC147 dataset [30], which
was originally proposed for the exemplar based class-agnostic counting task.
The FSC147 dataset consists of 6135 images from 147 visual categories, which
are split into train, val, and test splits comprising of 89, 29, and 29 classes
respectively. There are no common categories between the train, val, and test
sets. The mean and maximum counts for images in the dataset are 56 and 3701,
respectively. We train our model on the train set, and evaluate it on the test
and val sets. Each image comes with annotations for a single object category of
interest only, which consists of several exemplar bounding boxes and complete
dot annotation for the objects of interest in the image. Since our goal is to build
an exemplar free counter, unlike previous methods [24, 30], we do not use human
annotated exemplars as an input to our counter.

4.2 Evaluation Metrics

We use the Top-k version of Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) to compare the performance of the different visual coun-
ters. MAE and RMSE are defined as follows. MAE = 1

n

∑n
i=1|yi− ŷi|;RMSE =√

1
n

∑n
i=1(yi − ŷi)2, where n is the number of test images, and yi and ŷi are the

ground truth and predicted counts. MAE and RMSE are the most commonly
used metrics for counting task [49, 25, 24, 30]. However, RepRPN-Counter pre-
dicts several density maps and corresponding counts, one for each selected pro-
posal. Given k predicted counts from k proposals, we compute Top-k MAE and
RMSE by first selecting those proposals from the top k proposals which have an
IoU ratio of at least 0.3 with any ground truth boxes, and average the counts
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Table 1. Comparing RepRPN-Counter to class-agnostic counters. FamNet,
GMN and MAML are exemplar based class-agnostic counters which have been adapted
and trained for the exemplar-free setting, where a RPN is used for generating exem-
plars. We report the Top-1, Top-3 and Top-5 MAE and RMSE metrics on the val and
test sets of FSC-147 dataset. RepRPN-Counter consistently outperforms the competing
approaches.

Method MAE (Val set) RMSE (Val set) MAE (Test set) RMSE (Test Set)
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

GMN 43.25 40.96 39.02 114.52 108.47 106.06 43.35 39.72 37.86 145.34 142.81 141.39
MAML 34.96 33.16 32.44 98.83 101.80 101.08 37.38 33.27 31.47 133.89 131.00 129.31
FamNet(pretrained) 47.66 42.85 39.52 125.54 121.59 116.08 50.89 42.70 39.38 150.52 146.08 143.51
FamNet 34.51 33.17 32.15 99.87 99.31 98.75 35.81 33.32 32.27 133.57 132.52 131.46
RepRPN-Counter 31.69 30.40 29.24 100.31 98.73 98.11 28.32 27.45 26.66 128.76 129.69 129.11

corresponding to the selected proposals to get the predicted count ŷi. In case
none of the k proposals intersect with any ground truth boxes, we simply average
all of the k counts to get ŷi.

4.3 Comparison with class-agnostic visual counters

We compare our proposed RepRPN-Counter with the previous class-agnostic
counting methods [24, 30, 8] on the task of counting objects from novel classes.
We do not compare with class-specific counters [49, 25] because such counters
cannot handle novel classes at test time. Furthermore, these counters require
hundreds [49] or thousands [44, 38] of images per category during training, while
FSC-147 dataset contains an average of only 41 images per category.

GMN [24], FamNet [30], and MAML [8, 30] are exemplar based counters
which can predict density map for any unseen object category based on few
exemplars of the object category from the same image. These counters were
originally proposed to work with human provided exemplars as an input to the
counter. In order to make these exemplar based counters work in our exemplar
free setup, we modify GMN, FamNet, and MAML based visual counters by re-
placing human provided exemplars with RPN [33] generated exemplars. We use
the RPN of Faster RCNN [33] to generate the proposals for the competing ap-
proaches, and use the top k proposals with the highest objectness score as the
exemplars. For fair comparison, both the RPNs used with the competing ap-
proaches as well as the RepRPN are pre-trained on the MSCOCO dataset [19].
We do not use MSCOCO to train the DPN. We train the competing approaches
and our proposed approach on the train set of FSC-147, and report the re-
sults on the val and test sets of FSC-147. We also compare our method with a
pre-trained version of FamNet originally trained on the few-shot counting task.
Following [30], all of the methods are trained with three proposals, and evaluated
with 1, 3, and 5 proposals. We report the Top-1, Top-3 and Top-5 MAE and
RMSE values in Table 1.

As can be seen from Table 1, our method RepRPN-Counter outperforms all
of the competing methods. The pre-trained FamNet performs the worst, even
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Table 2. Comparing RepRPN-Counter with pre-trained object detectors,
on Val-COCO and Test-COCO subsets of FSC-147, which only contain COCO classes.
Pre-trained object detectors are available for these COCO classes. For RepRPN-
Counter, we use the density map corresponding to the proposal with the highest repeti-
tion score. Without access to any labeled data from these COCO classes, our proposed
approach outperforms all of the object detectors which are trained using the entire
COCO train set containing a large number of images from these COCO classes

Val-COCO Set Test-COCO Set

Method MAE RMSE MAE RMSE

Faster R-CNN 52.79 172.46 36.20 79.59
RetinaNet 63.57 174.36 52.67 85.86
Mask R-CNN 52.51 172.21 35.56 80.00
Detr 58.35 175.97 45.51 96.57
RepRPN-Counter (Ours) 50.72 160.95 25.29 56.98

though it was trained on the same FSC-147 training set. This shows that simply
combining pre-trained exemplar based class agnostic counters with RPN-based
exemplars does not provide a reasonable solution for the exemplar-free setting.
When retrained specifically for the exemplar-free setting, the performance of
FamNet significantly improves when compared to its pre-trained version. GMN
performs worse than the other baselines, possibly due to the need for more
examples for the adaptation process. This observation was earlier reported for
exemplar based class-agnostic counting task as well [30].

4.4 Comparison with object detectors

One approach to counting is to use a detector and count the number of de-
tections in an image. However, it requires thousands of examples to train an
object detector, and the detector-based counters cannot be used for novel object
classes. That being said, we compare RepRPN-Counter with object detectors on
a subset of COCO categories from the validation and test sets of FSC-147. These
subsets are called Val-COCO and Test-COCO, containing 277 and 282 images
respectively. We compare our approach with the official implementations [46]
of MaskRCNN [9], FasterRCNN [34], RetinaNet [18], and Detr [7]. The results
are shown in Table 2. Without any access to labeled data from these COCO
classes, our proposed method still outperforms the object detectors that have
been trained using the entire COCO train set containing thousands of images
from these COCO classes. Detr [7] performs worse than some of the earlier object
detectors because Detr uses a fixed number of query slots (usually 100), which
limits the maximum number of objects it can detect, while FSC-147 has images
containing thousands of objects.
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Table 3. Comparing RepRPN with RPN, on the test set of FSC-147. Using
RepRPN instead of RPN leads to significant boost in performance

RPN RepRPN

Method MAE RMSE MAE RMSE

GMN 43.35 145.34 32.17 137.29
MAML 37.38 133.89 32.09 141.03
FamNet (pre-trained) 50.89 150.52 38.64 144.27
FamNet 35.81 133.57 32.94 132.82

4.5 Comparing RepRPN with RPN

We are also interested in checking if RepRPN can boost the performance of class-
agnostic visual counters other than RepRPN-Counter. For this experiment, we
replace RPN [33] with RepRPN for GMN, FamNet, and MAML, and report
the Top-1 MAE and RMSE scores on the FSC-147 test set in Table 3. Using
RepRPN instead of RPN leads to significant boost in the performance for all
class-agnostic visual counters. This suggests that RepRPN is much better suited
for the exemplar proposal for exemplar free counting task in comparison to
RPN. Also, RepRPN works well with different types of class agnostic counters,
including the proposed RepRPN-Counter, GMN, FamNet, and MAML.

4.6 Ablation Studies

Our proposed RepRPN-Counter consists of two primary components: the RepRPN
for exemplar proposal and the DPN for density prediction. Furthermore, our pro-
posed knowledge transfer approach allows us to deal with unannotated objects
in the FSC-147 dataset. In Table 4, we analyze the contribution of these com-
ponents on the overall performance. The RepRPN baseline uses the repetition
score as the final count. We propose to use RepRPN with DPN, but one can
replace RepRPN by RPN [33] to get the method RPN+DPN. One can assume
there are no unannotated objects in the FSC-147 dataset, and train our proposed
RepRPN-Counter on FSC-147 without any knowledge transfer. As can be seen
from Table 4, all the components of RepRPN-Counter are useful, and the best
results are obtained when all the components are present. RPN+DPN performs
much worse than RepRPN+DPN, which shows that RepRPN is better suited
for our counting task than RPN.

4.7 Qualitative Results

In Fig. 4, we present a few input images, the proposal with the highest repetition
score generated by RepRPN for each image, and the corresponding density map
generated by the density prediction network. RepRPN-Counter performs well on
the first three test cases. But it fails on the last one, because the aspect ratio of
the chosen proposal is very different from the majority of the objects of interest.
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Table 4. Analyzing individual components of RepRPN-Counter on the over-
all performance on the test set of FSC-147. RPN + DPN refers to the case where
we replace RepRPN from our proposed approach with the RPN from Faster RCNN.
As can be seen, RepRPN is a critical component of our proposed approach, and replac-
ing it with RPN decreases the performance significantly. RepRPN+DPN-NoKT refers
to the method when we do not use any knowledge transfer, which leads to a drop in
performance. This shows the usefulness of the proposed knowledge transfer strategy.

Method MAE RMSE

Top1 Top3 Top5 Top1 Top3 Top5

RepRPN+DPN (proposed) 28.32 27.45 26.66 128.76 129.69 129.11
RepRPN+DPN-NoKT (no knowledge transfer) 29.52 28.80 28.42 132.76 131.03 130.82
RPN+DPN 35.81 33.32 32.27 133.57 132.52 131.46
RepRPN (without DPN) 29.60 29.18 28.95 136.25 136.21 136.26

Image Prediction Image Prediction

GT Count: 298 Rep: 175, DPN: 331 GT Count: 83 Rep: 107, DPN: 83

GT Count: 55 Rep: 69, DPN: 61 GT Count: 206 Rep: 31, DPN: 10
Fig. 4. Input images and the density maps predicted by RepRPN-Counter.
Also shown in red are the selected proposals. Rep is the repetition score predicted by
RepRPN, while DPN is the count obtained by summing the final density map.

In Fig. 5, we show the RepRPN proposal with the highest repetition score
for several images from the Val and Test set of FSC-147. First three examples in
each row contain test cases where the repetition score is close to the groundtruth
count. The last example in each row shows test case which proved to be harder
for RepRPN. RepRPN does not perform well in some cases when the objects are
extremely small in size. Since RepRPN, and RPN in general, uses a fixed set of
anchor sizes and aspect ratios, they may fail at detecting extremely small objects.
It is also difficult for RepRPN to handle extreme variation in scale within the
image, as evident from the failure cases.

RepRPN-Counter can be used for multi-class Class Agnostic counting task,
i.e. counting multiple object classes in an image. In Fig. 6, we show few images
from the Val and Test set of FSC-147 having at least two object classes, and the
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GT: 211 , Rep: 223 GT: 120, Rep: 99 GT: 51, Rep: 51 GT: 1092, Rep: 348

GT: 108, Rep: 110 GT: 402, Rep: 492 GT: 161, Rep: 127 GT: 1228, Rep: 263
Fig. 5. Selected proposal (shown in red) and corresponding repetition score
(Rep) predicted by RepRPN. The first three examples in each row are success cases
for RepRPN, and the predicted repetition score is close to the ground truth count. The
last example in each row shows a failure case.

Cred: 12, CBlue: 134 Cred: 38, CBlue: 7 Cred: 10, CBlue: 5 Cred: 14, CBlue: 9
Fig. 6. Counting multiple classes in an image using RepRPN-Counter. Shown
are RepRPN proposals from two of the most frequent classes in an image, and the
corresponding counts predicted by RepRPN-Counter. Cred/Cblue is the predicted count
for the proposal shown in red/blue.

counts predicted by RepRPN-Counter for the two most frequent classes in the
image. RepRPN-Counter provides a reasonable count estimate for both classes.

5 Conclusions

In this paper, we tackled the task of Exemplar Free Class Agnostic Counting.
We proposed RepRPN-Counter, the first exemplar free class agnostic counter
capable of handling previously unseen categories at test time. Our two-stage
counter consists of a novel region proposal network for finding the exemplars
from repetitive object classes, and a density estimation network to estimate the
density map corresponding to each exemplar. We also showed that our region
proposal network can significantly improve the performance of the previous state-
of-the-art class-agnostic visual counters.
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